

Agitation and Temperature Control of Sample Wells in Bio-Layer Interferometry

Members: Heath Muskat (MSE), Kelsey Lawson (MSE), Adriana Mejia (MSE), Inkiad Ahmed (MSE), Sherwin Pasha Eftekharian (BME)

Engineering Mentor: Michael Dubrovsky, Co-Founder and CCO, SiPhox Inc.

SiPhox COVID-19 Device

SiPhox is developing a highly scalable COVID-19 test

A single CMOS chip factory can produce enough chips to

test all 7.8 Billion people monthly.

Motivation

- Over 28M COVID-19 cases and 511K deaths in U.S.³
- Testing Benefits⁵
 - Prevents spread of infection by identifying individuals who need to isolate
 - Enables people to seek treatment earlier and prevent disability or death
- Current Diagnostic Test Methods⁴
 - Polymerase Chain Reaction (PCR) Test : detects genetic material of the virus, RNA
 - Sensitive and accurate
 - Usually not usable at point-of-care (POC)
 - Can take a few hours to a few days to return results
 - Antigen Test: detects specific proteins
 - Inexpensive, POC, fast turnaround time (15-60 min)
 - Less sensitive and accurate

Number of COVID-19 Cases in the United States [2]

Solution: Bio-Layer Interferometry (BLI)

- Shift in interference pattern of white light measures thickness of biological layer on biosensor tip
- Advantages³
 - High throughput
 - Accurate and highly sensitive
 - Fully automated
 - Excellent candidate for POC testing

Our Focus: Agitation and Temperature Control Components

Our team will:

- Design a prototype that is easily alterable to test various parameters to include thermally cooling below ambient temperatures, fluid agitation, and temperature sensor accuracy.
- Use multiple thermocouples to measure the temperature at various points on the block determine sufficient time for liquid in vials to reach optimum temperature use a feedback loop to control the cooling elements output
- Analyze the time it takes for dye to sufficiently mix in the vials until homogenous for agitation parameter
- Determine how accurately we can measure and maintain the temperature below 20°C to desired temperature set by user.

UCI Samueli School of Engineering

UCI Samueli School of Engineering

Design

UCI Samueli School of Engineering

20 °C

1000 rpm

80 (minutes)

ABORT

001:20 (hh:mm)

+10

+10

+10

+100

+100

Design Criteria

<u>Design Criteria</u>	Acceptance Criteria	<u>Advantages</u>	<u>Disadvantages</u>	<u>Failure</u> <u>Mitigation</u>
Ingress Protection Rating	IEC standard 60529: Reach an IPX4	Water damage is less likely to occur	electrical failure build materials	Potting Silicone caulking
Support Flexibility	Allows for range of motion without fatiguing	No plastic deformation cheap	Can wear over time Potential to react	Endurance testing
Over-Power Protection (IEC)	Meet IEC standard with a properly rated and effective fuse	Prevents major electrical damage	-	Analyzing typical power draws
Continuously Variable Temperature Control	Achieves temperature precision of +- 5° C	Increased accuracy for temperature sensitive samples	Increased set up time	Enough cooling power
Complete Agitation	Optical analysis of over 90% homogeneity	Well mixed samples are ideal for analysis	Best settings will differ from sample to sample	Optimal RPM and duration settings

Design Competitors

• Opentrons - Expensive, larger scale testing devices

• Creative Biolabs - Only available for drug discovery and research lab settings

• ForteBio - Device is very heavy and not portable

Market Strategy

<u>Siphox</u>

- Our prototype will enable rapid development of their at-home testing device.
 - Build costs are around \$1200 and can be used at medical labs nationwide
- Beyond COVID-19, the device will be able to test for other viruses using CRISPR based RNA sensing.
- Target market: Households around the world
 - Potential price point \$100

OneL	
ab(Y	
Siph	
0x	
One	
ab	
*	
0	
3	
•	

Future Goals

	Not Started	
Tasks Key	In Progress	
	Completed	

Upcoming Goals:

- Finalize purchases for the prototype
- Begin physical build in Spring
- Test design criteria

References

[1] "OneLab," *SiPhox*. <u>https://siphox.com/onelab</u> (accessed Dec. 01, 2020).

[2] CDC, "COVID Data Tracker," Centers for Disease Control and Prevention, Mar. 28, 2020.

https://covid.cdc.gov/covid-data-tracker (accessed Mar. 01, 2021).

[3] CDC, "COVID-19 Cases, Deaths, and Trends in the US | CDC COVID Data Tracker," Centers for Disease

Control and Prevention, Mar. 28, 2020. <u>https://covid.cdc.gov/covid-data-tracker</u> (accessed Nov. 29, 2020).

[4] "How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case | ACS Sensors."

https://pubs.acs.org/doi/full/10.1021/acssensors.0c01180 (accessed Nov. 29, 2020).

[5] "Why COVID-19 testing is the key to getting back to normal," *National Institute on Aging*.

http://www.nia.nih.gov/news/why-covid-19-testing-key-getting-back-normal (accessed Nov. 30, 2020).